A033 314 CITY UNIV OF NEW YORK GRADUATE SCHOOL AND UNIV CENTER F/6 13/13
BUCKLING OF A COMPLETE SPHERICAL SHELL UNDER UNIFORM EXTERNAL P--ETC(W)
1976 H E RAUCH» N H JACOBS» J L MARZ AF=AFOSR=2063=-71

UNCLASSIFIED AFOSR=TR=76=1219 NL

- -...
]

END

2—M77




i
| B
=
D
%
i
($)]

Jlig £
=2
:

"" 1 = i=
= [
.25

= s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963~ A




A " el i b e i s e ¥ A N S it o e RN S i A o BN . 3005 i 2 e
— — e e e e i Sl e s R b

-
Y

~
b

BUCKLING OF A COMPLETE SPHERICAL SHELL UNDER UNIFORM EXTERNAL PRESSURE

by

Harry E. Rauch, Neal H., Jacobs, and Jonathan L. Marz

314

A BRI 0057 75 5 i e AR SN
P
33
e

ADA

e

in rolease}

P |

QLT
Graduate School & University Center \&\\}\\’)\/ C
Department of Mathematics /1

33 West 42 Street 1

New York, N,Y, 10036

AT




A A o s R e A S I S SO o A i s - Ao S o il B

i dlobe il s
-

s —

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC

This technical report has been reviewed and is
approved fcr pull ¢ release IAW AFR 1390-12 (7b)e
Distributica is uulimited.

! A. D. BLOSE

i Technlical Information Officer




R e KM s P BB KA Kl o . . 23 2 o AL P 5 i A S A SO, S PN g o

/SECUQITV CAFICATION OF ’HlS PAGE (u'hor Date Enu-rcd’)
= p READ INSTRUCTIONS
EPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

/g AFOSR TR 76 - 1 _]3. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
% 21 9 o |

/p.. TITLE (and Subtitie) 5. Yv,_a;_%r REPORT & PERIOD covsn'sf_q
' BUCKLING OF A COMPLETE SPHERICAL KSHELL UNDER ? Interim ’V¢Pt‘/
‘. UNIFORM EXTERNAL PRESSURE . = 6. PERFGRMING ORG. REPORT NU R
3, AUTHOR(s) e \e. CONTRACT OR GRANT NUMBER(s)

Q/gfnarry E.fRauch, Neal H.]Jaco;s‘ and /j' o
Zﬂ Jonathan L.!Marz ~1AF = AFosr 3—2,%3—'/1

AME AND ADDRESS . SK
AREA & VORK UNIT NUMBERS

3 Research Foundation of The City University of NY
2 Graduate Sciool, Department of Mathematics 61102F
3 33 W 42 Street, New York, N. Y. 10036 7544 Ll

1. CONTROLLING OFFICE NAME AND ADDRESS
. Air Force Office of Scientific Research/NM
4 Bolling AFB, Washington, D.C. 20332

14. MONITORING AGENCY NAME & ADDRESS(H diffarent from Controlling Office) 15. SECURITY CLASS. (of this report)

/ %/r/ UNCLASSIFIED

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

NOT——

[ i 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
E ] non-linear elasticity Legendre functions elastic stability
- buckling of shells thin-walled
{ Galerkin method elasticity
spectral method structures

20. ABSTRACT (Continue on reverse side {{f necessary and Identify by block number)

>Non-11near axisymmetric biucking of a complete spherical elastic

shell under uniform external pressure is treated numerically.

Particular attention is given to the lower critical load, which is

the theoretical least failure load. Among the new results are the

evaluation of this load for thinner shells than those treated in

the existing literature; in particular, the values 6.73% and 4.9% nelx %
of the classical linear buckling loads are obtained for the radius- —> eW

DD ":2:"73 1473 EOITION OF Y NOV 65 1S OBSOLETE UNCLASSIFIED 4/09 54b /

SECURITY CLASSIFICATION OF THIS PAGE (When Data Ent




3
3
|
3

B e T . L

B b Bl T o S e RO B G S S 5 O . i /5 s AR I s s

UNCLASSIFIED

SN li. RN I S AT 50t 3, S5 PR i S w2

COﬂt.
..__.%

SECURITY CLASSIFICATION OF THIS PAGE(When Data Enterel,

-
.

20 Abstract
to-thickness ratios 100 and 200 , respectively. The shapes

of the buckled shells are computed for the first time in an
unexpected hint that there is an asymptotic (ratios-to-thickness
ration-independent) buckled shape. Numerical solution is by
means of spectral (Galerkin) expansions of up to 60 modes in
associated Legendre functions of order one applied to the
quadratically non-linear version of E. Reissner's equations./r

UNCLASSIFIED




vl sl R SRR R SN TR Wi 50, s St S TSl o 37

CAPTIONS YOR TFIGURLES

Fig. 2 Graph of dimensionless pressure p* versus inward polar
deflection (in radii) for a/h = 100, both symmetric and asymmetric
branches (see text). Computed with 40 modes through the deflection
corresponding to P* » then the remainder with 24 modes.

Fig, 3 Analogue of Fig. 2 for a/h = 200. Analogous computations
with 60 modes and 40 modes reospectively.

Fig, 4 Shape of planar cross-scction (through axis of symmetry)

of asymmetrically deformed shcll for both a/h = 100 and 200 and p*
at the respective asymmetric minima. The dashed piece of circle shows
the remainder of the undeformed shell; the shapes of the symmetrically
deformed shells for p = Q: are not shown because each intersects

itself and, hence, is not physically realizable a priori.

§
i
;
i
*
3




—_
3
=)
-~
o
o) N
0
N
.
.
]
o
—— - - e
o sl o AR




F
|
3
3
3

i a0 i S

kst

Ao

AL gk o A S I s L8

o 3 St b

R S B B TR S Sty

DIMENSIONLESS PRESSURE

3 6 9 12

INWARD POLAR DEFLECTION IN RADI

15

18

21

24




G Ao S A D S B S5 S ok b TR 5 o S T AN SRR s L i o PS5 s M SR BTN S vt

DIMENSIONLESS PRESSURE

6 9 12

INWARD POLAR DEFLECTION iN RADII

15

18

2]

24

Sk YL s M

Lodnid

27

30

33

36 39

42







BUCKLING OF A COMPLETE SPHERICAL SHELI, UNDER UNIFORM EXTERNAL PRESSURE
by
Harry E. Rauch, Neal . Jacobs, and Jonathan L. Marz

B L

1. Introduction
A brief history and discussion of the title topic appears in the
prcliminary sketch of this research, [11], where reference is made to
[1], [3], [5], [6], [13), and [14]. The present paper is self-contained.
The immediate goal of the research and the paper is to compute the

lower critical pressure of a complete spherical shell for plausible values

of radius-thickness ratios. We deal with axisymmetric buckling only here,

and this assumption is retained throughout the paper without further

mention, It is recalled that the lower critical pressure is the smallest

(groatest lower bound)of the pressures for which the initially perfect
shell assumes an axisymmetric buckled, i.e., non-spherical shape and thus
represents a theoretical absolute lcast failure load for the shell.under

@ axisymmetric deformation. In view of the marked imperfection sensitivity
of the shell ([5], [6], [13], and Section 7 below), the lower critical
pressure may, under certain circumstances, be the only reliable theoretical

1 failure load, as was suggested by von Karman and Tsien in their pioneer

work, At any rate the low values obtained here, roughly 7% and 5% of

the classical linear buckling loads for the radius-thickness ratios 100

B = oo, s U N ot g

and 200, réspectively, make the intuitively sensed strength of the
complete spherical shell seem illusory. Coupled with related results
for the axial compression of circular cylinders ([7], [4]), this in-
dicates the caution necessary in the use of these highly symmetrical

thin-walled structures in contrast to flat plates under edge compression,

which exhibit postbuckling stability, Indeed, the discovery that certain
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"optimized" stiuctures, o.g., flat panols reinforced with stringers,

exhibit imperfection-sensitivity when under end compression indicates

that it may be nccessary more often to perform non-lincar lower critical

load analyscs in addition to the now customary upper critical load,

i,e., bifurcation or snap-through analyses.

The basic equations used in the present analysis are the small

finite deflection form of E., Reissner's coupled pair of non-linear

ordinary differential equations for axisymmetric deformation of axi-

symmetric shells [12].

The method of solution is a version of the Galerkin or spectral

method in which the complete set of functions used is that of the as-

sociated Legendre functions of order one. These functions are the formal

eigenfunctions of the differential operator appearing in the differential

equations so that the linearized system is diagonal. In the opinion of

the authors the spectral method has three features to recommend it:

(a)

it is conceptually simple and relatively straightforward to apply,

(b) the resulting Fourier-type analysis of the relevant functions into

the various modes is enlightening and relates the non-linear analysis

directly to a familiar method of linear analysis, and (¢) the method

extends directly to certain more complex situations, where partial

rather than ordinary differential equations govern.

The progress to be reported here, above and beyond that in [11],

is, first, the exhibition of formulas in closed form for the cubic

integrals (4,m,n), see Section 3, and the consequent evaluation of them

by the program TABLE (sce Section 4), and, second, the numerical solution

of the coupled quadratic equations obtained from the spectral method by

means of the program, SPHERE (sce Section 4),
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As mentioned in [11], the first-named writer had pursued the present
rescarch as far as represented there independently, at which time he
became aware of [1], in which the same differential cquations (with
different interprctations for the dependent variables) are solved by
quite a different method, parallel shooting, which is confined in principle
to ordinary differential equations, The choice of data presented here
is motivated by the desire to give results both of autonomous interest
and of sufficiently different character from those in [1] to justify the
prescntation of the present method as an alternative (see Section 5 for
comparison of results), Particular attention is called to Figure 4 and
the relevant discussion in Section 5 and the two other "experimental
discoveries' there,

Some remarks on a method of incorporating imperfection-sensitivity

into the thcory given here are given in Section 7.

2. The Basic Equations

The source is Reissner [12, Sections 2-4, 9-11, in particular
Eqs. (63)-(69)]. The middle surface of the undeformed spherical shell
of radius a and thickness h is represented in cylindrical coordinates
(r,z,0) by r = r, = a sin By %) = 2z, = =a cos g, where E is the co-
latitude as shown in Fig. 1, where cross sections (say, 6 = 0) of the
undeformed and deformed shells are shown, Assuming axisymmetric de-

formation with the 2z axis as axis of symmetry, one can represent the

middle surface of the deformed shell by r=1r + u, z = z

0 + w, where

0
u and w, functions of E, are respectively the radial (horizontal) and
axial (vertical) components of the displacement vector (u,w). It is

important to note that u < 0 reprcsents displacement inward toward

————]
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the axis of symmetry, while w >0 in the southern hemisphere and w <O
in the northern hemispherye represents displacement inward toward the
equatorial plane 2z = 0 , The angle between the radial (horizontal)
direction and the ray tangent to the meridian of the undeformed middle
surface in the dircction of increasing g at any point with colatitude

€ 1is denoted by © |, and the corresponding angle at the displaced points
(coming from those with colatitude £) on the deformed middle surface is
denoted by ¢. (See Fig. 1.)

The first basic dependent variable B is defined by

(€9 B=-(p -~ Qb) .

It is important to observe that in the situation shown in Fig. 1, i.e., an
inward directed dimple at the south pole (north pole), one has B >0 (<0),
One defines the stress function { by

(2) y = roH = a(sin OH ,

where H 1is the horizontal (radial) stress resultant at all points on the
deformed shell which were originally specified by & on the undeformed
shell, It is important to observe that near the south pole ¢ <0 implies
compressive stress, with the same implication for the opposite incquality
at the north pole,

If the shell is subjected to a uniform inward normal pressure £ and
is in the membrane state, B = 0, then one has

V= ~% Oaz cos & sin § .

Now one defines the sccond basic dependent variable ¢ by
(3) V= 3 Paz cos € sin § + ¥
so that § describes the deviation of the stress function ¢ from the

membrane state,
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Now, if D = Eh /12(1 - v7) is the flexural rigidity, C = Eh,

where I is Young's modulus, and V is Poisson's ratio, then the basic

differential cquations are
(42) (D/a)[B" + B' cot E - (cotZE + VIB] = =¥ - £pa’B + {3 cot € ,
(4b) V' + ¢ cot § -(cot2§ - vy =CaB - %Caﬂzcot £

where the prime signifies differentiation with respect to § . Equations
(4a) and (4b) are deduced from [12, Eqs. (66) and (67)] by setting
PH = Pv = 0 and neglecting all terms on the left which do not appear
in the classical Reissner-Meissner equations and all those on the right
which do not have corresponding termé in the shallow-shell approximations
to these cquations [12, Eqs. (72) and (73)].

Equations (4a) and(4b) already permit the determination of pL .
However, it is desirable to be able to compute the buckled shape of the

; shell, from B and | . For that purpose we consider

Eqs. (63), (68), and (69) of [12] and obtain after setting PH =P =0,

v

the dimensionless displacements

(5a) u(§&) (1-v) pa V' sin B v
O .82 Bangs LS -vbcos g

+ %% B sin2§ cos § ~ v E&; B sin §




=G

(5b) wB = O-9 pa . N (1-v) pa :
SEE - (= et i‘-l:f sin §df3-f (1 -Tﬁl_x)s cos € dE

%

e g
%—l;asingdgi-f %ﬁcosgdg

€
%E- B sin2§ cos § df - %J' stin € d€

g
+f E%Bsingdg‘f %,;-Bcot € cos € dE

% %

g g €
+\:‘r§0%’ﬂscos §d§+vf %stin §coszgd§,

where 0 < §0 < m is that value of &, to be chosen ad libitum, for
which the axial displacement vanishes, 1i.e., w(§o) = 0. The first terms
on the right of (5a)~(5b), respectively, are the respective components of
the membrane contraction  with the normalization indicated.

It should be noted that all cubic terms in Reissner's formulas have
been deleted so that this is a "quadratic" theory (see Section 7 below
for further comment on this point). The modifications of the equations

necessary to study imperfections are indicated in Section 7.
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3. Mcthod of Solution of the Fquations

The key to the solution of (4a)-(4b) and the subsequent evaluation

of (5) is the observation that, the common diffcrential operator

' 2
(6) ()" 4+ ()" cot E- () cot™§
3 on the left of (4a)-(4b) can be written
' % 2
() + () cot §-()(esc“E -1) =L() + 1(C),
4 ~ where
: 1 1
L(Pn(cos B) = -nOH&)Pn(cos B,
Pi(x) being the associated Legendre function of order one and degree n
[15, Chapter XV, §5.5]. Thus Pi(cos £ is an everywhere finite eigen-

function for (6) with eigenvalue 1 - n(n+l).

Two facts about the Legendre polynomials Pn(x) and associated
Legendre functions of first order should be noted. One has, with

x = cos E,

(7a) P;(x) = (1 - xz)% dPn(x)/dx .
(7b) (@/dDP (cos D = ~(sin DAP (cos §/dx = P:(cos D,
(7c) [a®p_(cos ©/d€%) + (cot © (/dDP_(cos © = -n(as1P_(cos B,
(7d) a - a’ (o /ax’] - 2x(a/a)PL(x) - [1/Q - xD]PL ()
: = -nDPL ) . :

For technical reasons, which will become apparent later, it is con-
venient to introduce x = cos E as independent variable in (4a)-(4b) to
obtain [it should be understood that we are writing B(x) = B(cos ©

rather than B8(5, etc.)

2 2 2
: D 2, d B _ dg X pa X
(8a) —i(l-x) 2x —= - + VB |[= =y- B+ V8
. ax” dx (1-x2 )a ] 3 a-Ht
2 2
2, d ! d! X Ca .2 x
(8b) (1 - x") — - 2x -~ |=——p= = V) =CaB -=28 ’
dxz i ( 1-x ) " (l'xz)

since ( 6




2 2 2
(9) (L~ x)W@/dx™)() - 2x@@/dx) () - [xz/(l - xz)]( )
S 1
Since Pn(x), n=1,..., form a complete orthogonal set on (-1,1),
it scems reasonable to use them to find approximate solutions of (8a) -(8b)

for prescribed p by the spectral . method. We set

S

(10a) B= T AP
n=1 nn
s 1

(10b) v= £ BP (%)
nn

n=1

for fixed s, substitute in (8a){8b), expand the right sides out in
Pi(x), n=1,..., rctaining only the first s terms, and then compare
sides,

As a first trivial but vital application of the method we determine

1 1

the classical linear buckling load ¢ Set B = Apn and § = Bpn

crit’
in the equations obtained from (8a)-(8b) by ignoring nonlinear terms,
and obtain

(D/2a)[1 - n(n+l) - v] = -B - %pazA, [1 - n(n+l) + V]B = CaA .

On eliminating B and assuming A # O, one obtains

» E(h/ﬂ) = 1
(11) p = 1—2—(1—-—\)—)—{n(n+1) 1+ vV}« ) —1 =% "

Differentiating (11) with respect to n and equating the result

to zero give
2.1%
(12) n(n+l) ~1 - v =2[3(1 - V)]3as/n) .

Substituting in (11) yields

2 .
2E v h
(13) p 2 " (= 1 % — -

e JORIO

[3(1 )]"

A e e i o, S o Sl A o 5., i ) O G M.-

g FVNPITAT),
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wvhere L(h/a) is tho parcnthesis.

Returning to (10), we define

1
(14a) (am = [ —5 P]{:(x)P;(x)Pl];(x)dx

-1 (1-x)*=

| 1 dpP dp dpP

2 4 m

f ~f_1x(1-x)dx dx dx %

M (14b) T J\l (pl)Z g 2n(n+1)

a 4 jn ha 4 B e = 2n+1

and carry out the spectral method, first, by

substituting (10) in (8b) and comparing sides to obtain

:
4 s
(A) B = -{Ca/[n(n+1)-1-JJA +{Ca/2 n(n+1)-1~v]} £ [(&L,m,n)/j ]ALA ’
- o 4,m=1 o r
i
4 n=1,...,5, and then by substituting (10) in (8a) to obtain
s
(B) (%paz - (/a)[n(n+1) - 14v]DA =-B_+ £ [(4,mn)/j A B,
A n N el n {m
! ’
| .
- ; n= l,ooo’s .
f We introduce the dimensionless variables
! * 2
1 (15) Bn = Bn/pcrit a |,
i Lt ol 2
b it p/pcrit iples /pcrit P

{ Dividing equations (A) and (B) by Poy a2, multiplying (B) by two, and

it
using (15) give

T Y T T

1 F [3(1-\:2)]% 'y
a n 2L(h/a)[ n(n+l1)-1-v] h “'n
I " [3(1-\)2) % a ; [(leln)'[
Y AW/ [ ntl)-1-V] h J f‘CAm 2
{,m=1 n
* h n(n+l)-1+v 1
P - A
{ & 413@-vH) 1 (h/a) 7
(B") 8 .
+ZB:-2 b Q’M]ALBI=0, fm L,000,8
4,m=1 In
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To compute the shape of the shell corresponding to any solution

* #* *
2 i Al""’As’ nl,...,n‘_ of (A') and (B') we ropresont the middle

surface in dimensionless form as

r

16 T 0 u 2 u
(16) -_ e 4+ === 8in §+_
a a a a
z
z 0 w w
- e—y == = = COS §+_
a a a a

and write in Egs. (5a) and (5b),

pa _ (1_1_) 2L(h/a)p*
Eh

& Faso

Qa7

E 3

¥ _ by LM/
Eha a 3

V3 @-vT)

With the last definition one has
s
* * 1
= P

v b Bn n(cos )y

n=1

and if one substitutes this and the truncated series for B in (16)
and (17) then numerical integration using the trapezoidal rule yields
the shape. The shape computation was effected by a simple auxiliary
FORTRAN program. The value of §0 was taken to be T, i.e., the north
_1_)_0}2_ was taken to be fixed. The advantage of such a normalization will
be apparent in a moment,

In the program SPHERE (see Section 4) used to solve (A') and (B') it
was necessary to incorporate a subroutine which for each solution
D*, Al,... computes some convenient deflection parameter. At first
glance (and in [11]) it seems reasonable to use the south polar deflection
under the assumption that the equator is fixed (§0 = T/2). 1In hindsight,

if the abow mentioned auxiliary program had been used as the subroutine,

as is possible, then the fixed equator hypothesis would have becn as




a9 qv =22 a-vxe' + a-G2 k" £ A-¢-1™ha
a nel n
1+ WK ; 1-¢-1" " &+ k' £ Moel) 2
T fases O s B 2n+1  ‘'n
n=1 n=1
an?
2n(n+1) *
o R S i e P, ¢ ‘1“”"[ ’3 2T AdP
s (n~1+p(n-1))/2
+ 2 mBm Z A z (4 - 2p(n-1)-1) A(m,2j - 2p(n=~1)-1)
n=1 n=1 J_
s P (m=1+p(m=~1))/2
+ LT na £ B X (4i - 2p(m-1)-1) A(n,2i - 2p(m-1)~-1)
i “m=l ™ i=1
8 . 8 (m=-1+p(m=-1))/2 (n~l+p(n-1))/2
+ 2 E A % > ‘ (4i - 2p(m-1)) (4j-1-p(n-1))

=1 )=

easy to implcment. However, the original polar deflection subroutine

* *
Al,...,AS; Bl,...,BS directly, and there as will

uses the coefficients
be seen in Section 6, the simplification brought about by setting §D== n
is enormous, We then decided that half the resulting deflection is the

useful parameter for the symmetric deformations (sece Section 5), Since

the resulting formulas are in SPHERE and may be of independent interest,

we reproduco them here.

We define
m<£n
(18) A(m,n) = A(n,m) = {0 ’
2 m=n
2m+1
) 7 { 0 n =0 (2)
=1 (2)

1

1 asymmetric deformation
2 symmetric deformation,
(H) 2L(h/a)

. N

M3 (1=V7)

Then the polar deflection parameter v 1is given by

m=l ™ n=1 " i=1 Jal

1]




-12-~

x A2 - 2p(n-1) -1 , 2j -~ zp(n-l)—l)]

s

< 2
F a2 * *
\KL b —%—Sﬂill AB + £ m(m+l)B A
s 2myl mom e B o B

L

(n-1+p(n-1))/2

X Z (4i - 2p(n-1)-1) A(m,2i - p(n-l)-l)]
i=1
= 2n(n+1) (n+2) (n+3)
2\/Kp L 2 (2n+l) (2n+5) (2n+3) n An-}-z
: 2n2(n+1)2 2 g m(m+1) ;s
| TCnD (2D @ard)n uA ., OB LA
= m=1 n=1
(n+p(n))/2
x & (4i - 2p(n)-1) A(m-1,2i ~ p(n)-1)
i=1
s (n+p(n))/2
Eéiill A B R R (4i-2p(n)-1)A(m+1,2i-p(n)—l)]
2n+1 m n
m=1 n=1 i=1

This formula will be established in Section 6. In practice only the

linear and the first non-lincar terms make significant contributions.,

4, Numerical Methods

For given a’h, v, and s numerical solution of the equations (A')
and (B') was performed by means of the program SPHERE, written for this
purpose but adaptable to other sets of non-linear equation. SPHERE is
modeled on the algorithm proposed by E, Polak [10]. The essence of the
algorithm is a combination of the secant method with the method of local
variations, We found it to be very powerful.

Already in our first version of SPHERE, a PL/I double precision
program, we omitted certain convergence accelerating features at the end
of Polak's algorithm. It should be pointed out that there was little hope

that Polak's hypothesis on invertibility of the Jacobian would be verified

AR A AR AN s s i A S it i i ”
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in our case and, thus, little hopc of global convergence. Indeed, in
continuation of solutions near the first relative minima of the pressure-
deflection graphs we dften encountered suggestions of possible zero
Jacobians in the form of luss of significance messages from the linear
inversion subroutine. Correspondingly, we had little success in using
SPHERE to find many-mode solutions starting from wild guesses. Accord-
ingly the necessity for good starting and continuation procedures
manifested itself early. We shall describe some below.

Equations (A') and (B') were cast in the functional form G(A) = 0,
where G(A) is a vector with s components, by putting all terms on the
left side in each equation of (B') and then, for each attempted solution
vector A ""’As’ substituting the vector B*

1 1

into (B'). As a criterion for a "solution" we used |[G(A)|| < ¢ , where

t 3
,...,Bs computed from (A')

the norm is the usual vector norm, and ¢ was a predetermined small
number, usually e,

The coefficients (4,m,n) required in G(A) = O for a given s
were computed by a program TABLE on the basis of equation (27) in Section
6 and put on a disk which was read into core when SPHERE was run., Because
of the large size of the three-way array (4,m,n) for realistic s =~
despite the symmetry and vanishing properties of Section 6, which reduce
64,000 to 3270 for s = 40, for example - and the initial demand for
double precision a linearization routine for both TABLE and SPHERE was
written (by James Korenthal)., However, it developed that single precision
was quite adequate and that the linearization was quite time consuming
so that the (4,m,n) could be rcad in directly with tolerable core

requirements and very substantial savings. Ultimately a still simpler

and faster FORTRAN version of SPHERE was prepared. Copies of all programs
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desceribed in this paper are available by request from the authors.,
All discussion of accuracy and starting and continuation proccdurcs

hinges on the notions of critical mode and supercritical mode, Here,

a mode is one thc A's, the n-th mode is A , and n is the index of
——— e n ————

that mode. Then a mode is critical for a given value of a/h if its

index minimizes the expression (11) for p obtained from the assumption
of linear buckling or, equivalently, the expression for p* obtained by
dividing (11) by (13), where a/h is the given value, The mode whose
index differs from the minimizing index by one and whose associated value
of D* is the next lowest is also called critical. Thus to each value
of a/h is associated uniquely a pair of critical modes whose indices
are consecutive integers, in particular, one odd and one even. For the
two values of a/h, 100 and 200, handled explicitly in this paper one has,
for a’/h = 100, the values p* = 1,019939, 1,003290, 1.,000465, 1.009291
associated with the indices 16, 17, 18, 19, respectively, all other
indices giving higher values, so that the seventeenth and eighteenth modes
are critical with the even mode having lowest p* . Similarly for

a/h = 200 one has 1,004888, 1.000174, 1.001709 corresponding to 24,
25, 26, respectively, so that modes 25 and 26 are critical with the

%*
odd mode having lowest p . A supercritical mode for given a’/h is one

whose index is greater than those of the critical modes for that a/h.
The critical modes play a role, first, in starting procecdures. The
basic starting strategy to find a solution of G(A) = 0 for given p*
and a/h is to solve the smallest number of equations possible, i.e.,
use the smallest number of modes possible, and then extend this solution
to onc with more modes by using its cntries as the initial entries of a

guess for a higher number of modes, with the remainder of the entries

being zeros., We call this strategy extending a solution by zeros. It
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is hampered, however, by the pecular fact, discovered in the course of
the numerical work, that it does not work unless the¢ number of modes or,
equivalently, the index of the last (highest index) mode of the solution
to be extended is greater than the indices of the critical modes for

that a/h. More precisely, only solutions already containing super-
critical modes can be extended by zeros to obtain solutions with (even
more) supercritical modes.

"Subcritical" solutions can often be extended by zeros to “longer |

subcritical" solutions, but these cannot be extended further and represent

spurious approximations to solutions, analogous to the extraneous solu-~
tions to the difference equations sometimes obtained when applying
finite-difference methods to differential equations,

Accordingly it is necessary to start by assuming small, quite un-
physical, values of a/h such as .5 for which Az is supercritical,
For fixed p* (for example, a little less than 1, if one is starting a
pressure-deflection graph of the postbuckling regime) one solves for
A, A

1" 2
an even more surefire technique is given below. The resulting solution

by starting with any reasonable initial vector, say, (1,0) -

is then extended by zeros with a sufficiently large number of terms so
that the last index is supercritical for a higher value of a/h, say, 5.
The resulting solution is then continued by letting a/h vary from the
starting value to the new value, The new solution is then extended by
zeros until supercritical for a higher value of a/h, and so on until a
solution at the desired a/h 1is obtained. This is called zig-zagging.

It proved to be more efficient to zig-zag in reasonably small increments

of a/h rather than to attempt to, say, extend the initial solution to

be supercritical for the final value of a/h and then to continue to

that value. Also, it was found to be much ecasier to extend solutions by

T AT R s
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. o . . *
zeros or continue solutions in the paramcter a/h for p  near 1

* *
and small deflections rather than for p near P

I and the corresponding
4

largo deflcctions,

A pressure-deflection graph is not monotone in principle, and the
approximations to it obtained by truncating the expansions at too small
an index are often even more oscillatory. Hence, the vital feature of
continuation by changing one of the A's, typically Al or A2 for
asymmetric or symmetric solutions (sce Section 5), respectively, and
solving for p* as one of the unknowns was built into the program, Once
this was done it was found that it was much more efficient to use this
method of continuation even on monotone branches so that solution with p*
fixed and continuation by varying p* were used ultimately only in the
starting procedurc mentioned above. It was found that, in general, al-
though not always, the polar deflection is a monotone increasing function
of Al or Az .

For very large values (say, > 15 radii) of the polar deflection and
correspondingly large A's it is necessary to relax the demand on the norm
of the residuals by scveral orders of magnitude in order to continue
computing the graph efficiently since the residuals are extremely sen-
sitive to small changes in the A's when the first few of the latter are
large, as one sces by inspecting (A') and (B'). However, any one solution
can be refined and the effect on the graph is visually imperceptible.

It should be noted that 1f one distinguishes symmetric from asymmetric
solutions to (4) (scc Section 5) then the associated truncated expansions
can be identified easily. In fact, as noted there, the coefficients An
and Bn with odd n vanish for a symmetric solution. This reduces the

actual number of variables for even s to s/2. SPHERE is programmed

to take advantage of this by handling only variables with even indices

e e e e e e e e e e ettt e et e e e e g
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upon receipt of tho proper input, cffecting a very substantial saving
in computing timo.

Finally we outlinc a foolproof procedure for solving G(A) = O
when s = 2, Wec note that by properties of the (4,m,n) obtained in
Section 6, (1,1,1) = (2,2,1) = (2,1,2) = (1,2,2) = 0 and (2,i,1) =

(1,2,1) = (1,1,2). For s = 2 (A') and (B') become

¥ Bt a

b
B " G G- "X'Al i Z(z’l’l)AzAl)

R
* B3~V

a 5 2 8 z)
IR S T ey )( A, + 57(1,1,2)A0 + 51(212:2)4,
* h) 1+ v) ) 5 * 3 * 3 *
(p o (a . Ay = -2B, + 5(1,2,1)A.B, + 5(2,1,1)4,8,
4,3(1~v)L(h/a)
- h) (1 + v) ) * 5 * 5 &
(p 3 (Z) A= 2B, + g(1:1,2)AB, + 6(2,2,2)A282 ’

4.£(1—\)2)L(h/a)

*
If one sets A1 =0, Bl = 0 so that one is seeking a symmetric solution,

then one sees that the first and third equations are identically satisfied.

One could then substitute the second in the fourth to obtain an explicit
cubic for Az which could be solved numerically, but that is not necessary
if one is using SPHERE since the use of initial guess vectors with the
first component zero is equivalent to solving that cubic by a secant-
local-variation method., If, however, one desires an asymmetric solution,

so that Al # 0, then one finds that substitution of the first two

equations in the third leads to a cubic equation in A1 and Az every

term of which contains A1 to the first or third power. Cancellation

2
of Al leads Lo a quadratic which can be solved explicitly for A1 as

follows,
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A2 F2,2,2)  18(5-W1.2 96 1 (3-\)
o La,1,2) 5(1-vJ'2 5 (L,1,2)  (1-w) 2
v ' 32 (5-v) 1 TL(h/a) (1-V) ﬂ_l_ * s _1__’2)2';
; 5 (1I-V) S e MY 1z\a/ J

a,1,2% b Aa-vd

Again this equation could be substituted along with the first and second

= equations into the fourth equation to obtain an explicit cubic in A2

whose solution together with this equation would solve G(A) = 0 for
s = 2. But, again, it is more suitable, if one has guessed Az, to

calculate A from the preccding cquation and use the resulting A

1 ’Az

1

e catile

as input for the program.
It should be mentioned that the discussion of imperfection-

sensitivity at the end of Section 7 suggests another starting procedure.

What makes starting so difficult for (A') and (B') is that they are

; ! homogeneous so that they possess a solution whose entries are all zero.
By inserting a non-zero imperfection parameter en in the equations at
the end of Section 7 one obtains inhomogeneous cquations of which non-
trivial solutions which continue the trivial solution for p* = 0 are
easily found for small P* . Continuation to the relative maximum

(or maxima) and then to the downward sloping part of the graph followed
by continuation in en as en -0 would yield non~trivial solutions of

t the equations for the perfect shell which could then be continued for

smaller or larger deflection.

5. Numerical Results

As a preliminary we note that replacing & by ™ - € in (4) while
replacing B,y by =B, ~V¥, respectively, shows that if B8(8&, Y(E) are

a solution then =B(m-§), -y(m-£) are, too, Equivalently, (with the

same abuse of functional notation remarked on in Scction 2)
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-3(~x), -Yy(-x) are also a solution of (8). From the remarks at the ;
beginning of Section 2 it is clear that this means the physically |

{ obvious fact that if one has a buckled shell then the mirror image in

the equatorial plane of the unbuckled shell is also a buckled shell.
In particular, a solution B,y§ for which B(&) = -B(™=-B), WO = ~y(m-£)
or, equivalently, B8(x) = -8(~x), ¥(x) = -¥(-x) will be called symmetric

because it manifestly represents a buckled shape symmetric with respect

to the equatorial plane. By the preceding remarks the asymmetric
solutions come in pairs, one being the mirror image (in the equatorial
plane) of the other. In terms of the truncated expansions of £ and §

one observes that Pi(x) = (l—xz)éhpn/dx and the fact that Pn(x) is even

or odd according as n is, together with B(x) = -B(-x), ¥(x) = -¥(-x)
*

imply An = Bn = 0 for odd n, that is, a solution is symmetric if and

only if terms with even indices only appear in the expansions. For this

reason symmetric solutions are referred to as even in our programs al-

though, in fact, they are odd as functions of x. Similar reasoning
shows that one of the paired, mirror-image,asymmetric solutions differs
precisely from the other in the signs of the terms of odd index. The
presence of terms with odd indices in the expansions of asymmetric i

solutions led us to call them odd-even in the programs although they

are neither odd nor even,

For all the values of a/h used in our work we found for any even

supercritical s three solution branches of G(A) = 0 issuing from the
*

§ vicinity of p =1, Al & ey S AS = 0, i.e., the (unbuckled) membrane

? solution at the classical linear buckling pressure., By a solution

1 *
; branch we mean a one-parameter family of values of p and associated

el —
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non-trivial vectors A each of which satisfies G(A) = 0 for the
associated value of D* . The parameter is either p* itself or onc
of the A's, usually A1 or A2. Onc of the branches consists of sym-
metrice solutions and issues from the point for which p* is the value
associated with the critical mode of cven index for the given a/h, and
the other two issue from the corresponding point for the critical mode
of odd index, any one of the two representing the mirror images of the
solutions of the other. When the value of p* and the value of the polar
deflection, which, we recall, is the right side of (18) for asymmetric
solutions and half that for symmetric ones, are plotted as ordinate and
abscissa, respectively, one obtains two pressure deflection graphs, one
for the symmetric solution branch and one for the two mirror image asym-
metric solution branches since, as once verifies from (5b), the pola-
deflection is the same for mirror images. We ignore the prebuckling linear
membranc pieces of the graphs since they play no role in determining p; .
However, if imperfection-sensitivity were studied in the way sketched in
Section 7, then the corresponding parts of the graphs would be quite im-
portant and would require much larger scales than those of Figures 2 and 3
here.

We take the lessor of the absolute minima of the two graphs in question

*
P Now for a’/h = 100, 200, the two cases

for given a/h to be
handled in extenso, the two graphs, symmetric and asymmetric solutions,

in cach case are, most remarkably, virtually coincident and certainly so
when graphed on any reasonable scale. For that reason Figure 2 actually
is two graphs, and the same is truc of Figure 3., The second interesting

fact is that for both 100 and 200 the asymmetric minimum proved greater

than the symmetric minimum but only by at most one digit in the last




=

-21-
significant figure retained. In [1] for a/h = 9.13 (their Figure 1b)
it is also true that the symmetric minimum is less than the asymmetric
minimum. On the hypothesis that this is always true for 9.13 < a/h < 200

we have included two other sets of data in Table 1, a table of lower

critical pressures. Onc is a run for a/h = 21.4 we made for symmetric
solutions only and the other for a/h = 91,3 is taken from Figure 9 of
[1] by graphical estimation. Other data included in Table 1 for the
sake of comparison are the values of k and P,

L

*
in [ 1], corresponding to our a’/h and pL , respectively,as well as the

, the parameters used

deflection parameter A of [1] for the relevant solutions and our polar
deflection parameter v for our solutions and those of [1] where graph-
ical estimation permitted us to determine it. A is a root mean square
deflection, which we did not compute for our solutions.

We call attention to another unanticipated result of our computations,

*
Figure 4 is the shape of the asymmetrically deformed shell for p = DL at
a/h = 100, but it is also the shape of the corresponding shell for

a/h = 200, within the tolerance of the graphical realization. There is

a hint here of an asymptotic shape as a/h - « , If one regards the shell

as an inextensible membrane then a classical theorem of differential
geometry in the large implies that the shell is rigid, i.e., admits no

(differentiable) bending. The only possible deflected shape is obtained

in the obvious way by violating differentiability and sawing off a cap {
and reversing it. Now a careful inspection of Figure 4 discloses that
the indentation resembles a piece of sphere of radius a subject to
increasingly strong bending. But in the absence of elaéticity theory

there is no a priori reason to select one size of cap over another, where-

s codlaaibl Seiais s 3

as Figure 4 shows that the non-linear elasticity theory embodied in

Reissner's equations predicts a definite size, a central angle of a

s aiie SR
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little less than 120° for a/h = 100, 200 and possibly asymptotically.
Two final points of discussion: accuracy and physical significance.
Tho figures in Tablo 1 for a/h = 100 and 200 are accurate at least to
the number of significant fLigures shown, This was detoermined by in-
creasing the number of modes until the figures stabilized. The results
shown used 40 modes for a/h = 100 and 60 for a’/h = 200. The last
probably approaches the limit of the present codes within practicable
computer times, More modes and greater a/h require improved codes
(see Scction 7). As a sample of our results Table 2 shows Al""’A4O ’

£

Bl""'B (rounded to four figures to save space)for a/h = 100,

%
40
*

P = ,0674, which is the asymmetric minimum,

As far as physical significance is concerned the likelihood or lack
of it of realizing deflections of the magnitude shown in Figure 4 is
discussed in Section 7. However, the physical usefulness of the values

*
of PL in Table 1 for the thin shells (a/h 2 91.3) should not be dis~

missed lightly. Discussions of imperfection-~sensitivity indicate that

*
the snap-~through load can be degraded substantially toward pL .
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TABLE 1

JOWER CRITICAL PRESSURES

a’h k [1) p: P 1 v A1)
9.13** 1073 15.7 % .0105 3.4 ¢ 2.5
21.4 b raaat  smamed Famt -
91.3** 107° 7.291  q.exao™tt 1.2 8
100 8.3x10° 6.73 % 20800 1w . -
200 2.08x10™° 4.9 % 1.500% 1.4 .

*xk
Results from [1] .
+computed from symmetric solutions only.

§]:}stimated from graphs in [1].
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EXPANSION COEFFICIENTS, a/h = 100, v = 1.41, p = .0674, p

A's (read by rows; 3,063 - 1 = 3,063 X 107}

3.063-1

-1.0564~1

3.749~2

2,011~2

-9,381~3

~3.669~3

1.912~3

5.859-4

"
)

-1.462~2
8.111~-3
6.499~3

-3.724~3

-1.605~3
8.022-4
2.667-4

-1.601-4

3,706-1

-9.791-2

-1.000-3

2.398-2

1.319-3

-4,740-3

-3.514-5

8.719-4

-1,201-2
-3.290-3
8.153-3
5.447-4
~2.030-3
~4,930~5
3.756-4

~1.033-5

-24-~

TABLE 2

2.982-1

~-2.906-2

~3,911-2

9,561-3

8.077-3

~2,156-3

~1.396-3

4,585~4

~6,.366-4
~1,081-2
3.446-3
3.353-3
-8.863-4
-6.201-4
1.886-4

1.054-4

, etc.).
1.400~-1
4,070-2
-3.306-2

-7.882-3
7.192-3
1.208-3

-1.380-3

1.110-2
-9,.419-3
-2,888-3

3.002-3

5.649-4
-5.882-4
-7.707-5

1.173-4

= ,0673

-1,.858-2

6,475-2

~4.589-~3

~-1.494-2

1.462~-3

2,753~-3

~3.949-4

-5.175-4

1,474-2
~1.305-3
~5,743-3

5.751-4

1.200-3
-1.505-4
-2.125-4

4 . 803"5

-
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6. Legendre functions and the cocfficients (4,m,n)

We nced the recursion formulas [15, §5. 21]

(20) xdP /dx = nP + dP _/dx
n n n-
(21) Q-2)dP fox = 0P - - P
n n-1 n
22) xPn = [(n+1)/(2n+l)]?n + [n/(2n+l)]Pn_1
(23) dPn/dx = dPn_z/dx + (Zn-l)Pn_1 ‘
From (20) and (21) we deduce
2
(24) (1-x )dPn/dx = [n(n+1)/(2n+1)](Pn_1- Pn+1) .
From (22) by induction we deduce
(n+p(n))/2
(25) dPn/dx = j:i (43-1-2p(n))P2j_1_p(n)
Finally from (20) and (25) we deduce
((n-1)+p(n-1)/2 -
(26) xdP /dx = nP_ + Jfl (43'1'2"(“'1))p23-1-p(n-1)
@-p(n)y2
= nPn + J:; (4J-3+2p(n))P23_2+p(n) .

since p(n-l)=1-p(n).

Now apply (25) with n = 4, (24) with n = m, and (26) to obtain

dPL dP_ dP
L ndx

dx dx dx

(27)

; 2
(4mn) = [ x@-x)
-1

m(m+1) “’;:p("')yzou-l-zp(o) {n[P(2i-1-p () ,m~1,n)
2m+1

i=1 1
(n~p(n)/2
- P(2i~1-p(4d) ,m+1,n)] « X (4i~3+2p(n))
J=1

X [P(2i-1-p(4) ,m~1,2j-2+p(n)) - P(21-1-p(4),m+1,2J-2+p(n))1] ’
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3
where P(4,m,n) = j' P{’Pmpn dx .
~1

Now according to a result of Ferrers and Adams [15, p. 3311,[13, p.306]

(28) 2 A(e=-2)A(e-m)A(e-n)
1 26+l A(€)
j PpP dn-
~1 0 if 4+m+n is odd or if sum of two

indices is less than the third,

sheie on }2-('C+m+n), ACK) = 1.3 --.(2k=1)/k!, k >0, A(0) =1 . For
programming purposes it is better to extend the definition of A(k) by
setting A(k) = 0, k <0, in which case the two-index sum property becomes
a consequence of the top line of (28). It is clear that P(4,m,n) is
symmetric in 4,m,n . It is clear that P(4{,m,n) = 0 if <4+m+n is odd
because the integrand is then an odd function, T_hat P(4,m,n) = 0 1if,

say, 4 >m+n follows from the fact that the Legendre polynomial P is

2
orthogonal to all polynomials of lower degree, in particular, PmPn .
It is important that (4,m,n) has the same symmetry and vanishing

properties as P(4,m,n). The symmetry is obvious from the definition

(l4a). Again, if 4 >m+n then

1 dP_ dP
4(4+1) _ m n
Chma) & Sl T Tl T e

by (24). But the factor of the integrand outside the parenthesis is a
polynomial of degree m+n-1, and both P“’__1 and P£+1 are orthogonal to
it since 4+1 > 4~1 >m+n-1 . Finally, the same formula shows that if,
say, 4 is odd and m and n even then (4,m,n) = 0 since the inte-
grand is odd. The same is true of 4,m,n all odd. This exhausts the
cases where 4em+n 1is odd for fixed 4 in the first position. By sym-

metry, then, (4,m,n) = 0 for 4+m+n odd.

We now wish to c¢stablish the enumerative formulas
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(29) N 4+ (N-2)3 + 12(N2+(N—2)3) + 20(N+N-2)1,

N
o

(N-l)3 + 12(N-1)2 + 20(N-1)]

iy
»

for the number of distinct non-zero (L,m,n) with 4,m,n <N with N

even or odd, respectively, i.e., in view of the symmetry, the number

of non-zero (4,m,n) with N 24 2m 2n, We reason as follows. If

N is even, then there are N/2 (4,m,n), £ 2m 2 n, of the form (N,N,2k),
namely, for k = 1,...,N/2; N/2 of the form (N,N-1,2k-1), namely, for

k=1,...,N/2; N/2 ~1 of the form (N,N-2,2k), namely, for

k=1,...,8N2-1; N/2-2 of the form (N,N-3,2k-1), namely, for

k

2,..4,N/2-1} etc., down to 1 = N/2 - (N/2-1) of the form (N,N/2,N/2)
for a total of N/2 + (1 +...+ N/2) = N/2 + (N/2) (N/2+1)/2 = N2/8+ 3N/4.
We can repeat this argument with 4 = N-2, N-4,...,2 to obtain

N N N/2 N/2
=y n2 + Z n== I m2 +% I m

n even n even m=1 m=1

N

-

16 N(N+2)

= %5(2(N/2)3 + 3(N/2)2 + N/2) +

1 3 2
ZE(N + 12N“ 4+ 20N).

Similarly, there are (N-2)/2 of the form (N-1,N-1,2k); (N-2)/2 of
the form (N-1,N-2,2k-1); (N-2)/2 - 1 of the form (N-1,N-3,2k), namely,
for k=1,...,(N-2)/2 -~ 1; (N-2)/2 - 2 of the form (N-1,N-4,2k~1),
namely for k = 2,...,(N/2)/2 - 1; and so on down to 1 = (N-2)/2 -

(N/2 - 2) of the form (N-1,N/2,N/2-1) for a total of (N-2)/2 +

Q4+ ... + (N-2)/2). Repeating the argument for those of the form
(N-3,N-3,2k), etc., one sees that the grand total for 4 = N-1,N-3,...,3

is the same as that obtained above but with N replaced by N-2. Hence,

EY e P S AP S

for N even the total is the first line of (29). But a reexamination of

the last part of the combinatorial reasoning shows that we have established
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that the number of non-zero (4,m,n), £ 2m 2 n, with odd 4 <N, N odd,
is precisely equal to the number of non-zero ({,m,n), £ 2m 2 n, with
evon £ * N-1, Using this fact we sce that for N odd we get a total
of twice the last mentioned number, once for N and once for N-1, or
the socond line of (29).

To complete our work it is only necessary to derive the formula
(19) of Section 3. The limits in all the integrals in (5b) are € = 0,
§b = 7T, The integral in the first term is thus -2, and the use of (17)

accounts for the first term. A typical term in the integral of B cos §

in the second term of (5b) becomes, when one sets x = cos § ,

1 +——— dP
2 n x n+1 n ] n+1l

- - —— =~ — e e (] = (=]

An Jll Ax dx -—§-dx An 2n+l  2n+l ( e )

-

n+1
-1 - (-1) )An .

Here we have used the consequence

xdP /dx = [ (n+1)/(2n+1)]dP /dx + [n/(2n+1)]dP . /dx

of (20) and (23). For the next term of (19) we take the next two terms
of (5b) and integrate the first by parts, noting that the integrated out
terms disappear., Then the same device as used just now and (17) complete

2
the term, The integral of B sin § cos § in the last linear term

becomes
s 1
- £ A [ Pa-xdexdax
n=t * 12 "
s 1 2
= T a [ P @-3xTdx= (/54
n n 2
n=1 . -1
since 1 =~ 3x2 = 2P2 , where (7a) and an integration by parts have been
used,
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The computation in (19) of the first two non-linear terms is clear
since the substitution x = cos € turns the integrands, with the aid
of (17), into inner products of B with itself and with W*, respectively.
The same devices convert the next non-linear integral, except for the

factor K in (18), into

(29)
f} « x2 s * i 4 de dPn
¥ B8 &= £ B A X ~— X =—— dx
-1 l-x2 m,n=1 o BN " o
_ (m-1+p(m-1))/2 _
i f: 1Bm A j' (um + 13:1 (4i-1-2p@-10)P,; 0 1y
2 -
(n-1+p(n-~1))/2
X (nPn + z (4.]-2p(n-1)—1)sz_2p(n_l)_1) dx ,

J=1
where (26) has been used, which gives the result indicated without the
addend v in parenthesis. The next non-linear term in (5b) becomes
(up to a constant factor)

(30)

O «
f ¥ B cos € d€ = ( b B (-cot 5 P + m(m+1)cot € P )
n

n m=1

(; A Pl)sin € d§

n=1
g 8P OP
(z B x—-’i‘-—'l)dx
_1 m,n=1 dx dx
} / s g dpP
-] \ Z BAm(m+1)xP -a-?z)dx.
-1 m, n_l

Here the first equality results from (9b), (9¢c), and the resulting formula
§P (cos E) = ~-cot §P:l(cos D + m(m+1)Pm(cos 1)

But the first term of the second equality in (30) is

O »
f V B cot € cos § d§ ,
m

oo i ey —
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as is seen from (29), and this yiclds the missing Vv . The remaining

term in (30) becomes

- il # ( (¢n-1)+p(n-1))/2 >j
Z B A m(u+l) P {nPn + X (4i-2p(n-1)-P_. .y - AX
m,n=1 o g i=1 21-p(a-1)-1)

by (26), and this yields the next two terms of (19). Finally, from (24)

we obtain
x2 dpn i dPn i n(n+1) @ - )
dx dx 2n+1 n+1l n-1

and this with (25) yields the final integral except for the indicated

constant factor

1 1 s dpP dpP
—f xzﬁzdx = - I x2(1-x2) T AA —2 Bay
mn dx dx

-1 -1 m,n=1

= % 1"‘(""‘l)AA(p P ymEDe Lo )

™ PR A 2m+l ‘m n m-1 m+l” \ 2n+1 ° n+l n-1

,n=
(m+p(n) )/2 )
s if; (4)—2p(n)~-1)r’21__p(n)_l X! 5

which yields the final terms of (19).

7. Discussion

In this section we wish to take up a few points about comparison

with different theories, other results and possible improvements or €exX-

tensions.

First of all, in using E. Reissner's equations in small finite
deflection form and retaining only the terms shown, we are adopting a

quadratically non~linear theory (quadratic theory, for shortness), some-

tines called a weakly non-linear theory. While this is admirably adapted

to spectral (Galerkin) methods, one might very well suspect its accuracy

or oven relovance, in comparison with physical reality and with the full

non-lincar equations of E. Reissner, for the large deflections reported




2 Do

* %
in Section 5 in the post buckling range near p = pL and on the rising ;

section of the pressure-deflection graph to the right. While conceding *

the physical unreality of the rising section of the graph, we feel thore
are sonie grounds for a cautious optimism about both comparisons. As far
as the fully non-linear Reissner equations go, Mescall [8] has reported
only insignificant differences between the predictions of that theory and
the quadratic theory for large-deflection buckling of spherical caps, and d
that situation and ours are not so radically different., As far as physical

reality goes, from the very beginnings of the type of approximate non-linear, !
in fact, quadratic plate and shell theories we are using, namely, the ;

F5pp1~von Karman plate equations, comparisons with experiment have been

remarkably accurate for deflections many times those for which the equa-

tions were originally estimated to be valid, e.g., tens of thicknesses

f ' versus one thickness for the F.-v.K. equations. Indeed, there is almost i
a metamathematical principle of unexpectedly large range of validity in i
many mathematical models in physics and technology. In the spherical case
the shape of Figure 4 has not been observed experimentally to our knowledge,
but that may well be due to the failure of the elastic stress-strain
relations over portions of the shell at snap-through. In view of the
differential-geometric plausibility of Figure 4 as discussed in Section 5,
one can conceive of a carefully conducted experiment, possibly with

certain constraints during buckling, using material (not metal) of ex-~
ceptional elastic properties (linear elasticity through rather large
strains), that would yield the shape of Figure 4.

1 It is clear that the spectral method will not work with the fully

non-linear Reissner equations, but the pseudospectral method will. The

psoudospectral method inserts expansions in complete function sets in a

set of differcntial equations but, rather than reexpanding the equations,
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simply demands that they be satistiod at a prescribed number of points.
Tho advantapes ol that from the computing point of view is evident oven
for the cases when spectral mothods areo applicable. One suspects,
however, a loss of accuracy per given number of modes vis-a-vis spectral
methods in those cases.

Our computations have indicated that a/h = 200 is about the practical
upper limit for our method with our present programs. However, it would
be intercsting to explore the possibility of applying fast transform

methods as used by Orszag [ 9] in conjunction with spectral methods in

fluid dynamics. His requirement of a finite expansion condition is precisely

met here. The resulting shortening of the computation of the sums in (A')
and (B') might well make possible many mode computations, necessary for
200 < a/h =< 1000, in less time than presently required for a/h < 100,

Finally, we show how to include the effect of small axisymmetric
imperfections in Reissner's equations. The modified equations can be
solved numerically by our codes after making the necessary obvious modifi-
cations. The result would be a modification of graphs to be Figures 2 and
3 near the origin (clearly one would need expanded deflection scales there).
Unfortunately we did not possess the modified equations until the con-
clusion of the numerical work reported here, and we do not have numerical
results for them. The important thing to notice is that the imperfection
sensitivity (snap-through) analysis and deep post buckling analysis appear
simultaneously as features of one non-linear large deflection analysis.
There is ample precedent for this observation in plate and shallow shell
analysis in the literature, but it bears reemphasizing.

The modified equations are obtained by adding the terms Py cot € -
% Dazp and =P3 cot £ to the right sides of (4a) and (4b), respoctively,

where

g
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p 1
P = X e“ P (cos ©)
n=1 _

and %1 , 1 £n < s, is the (small) imperfection parameter for the n-th
mode imperfection. These terms were suggested by equations (26-28) of
[21. They can be justified by inserting % - € - P in equations (III)
and (IV) of [12],getting sin ¥, = sin € - P cos §, cos ¢, = cos € +

P sin € there, and discarding the terms P3Yy} , %-PBZ on the grounds that
they are essentially cubic.and, hence, negligible in a quadratic theory.

The result is to add the terms

S

1 [('C!mzn) € A, - [Lmn)] e{’B +p€ X
K[n(n+1)~1-v] L m=1 n & m=1

to the right side of the n-~th equation of(A')and left side of the n-th
equation of (B'), respectively.

The following simple analysis based on (A') and (B') shows the im-
perfection-sensitivity of the shell. Take s even, An =8 =8 ,
n=1,...,8~1 and 'Asl so small that its cubes are negligible.

*
Eliminate Bs to obtain, after ignoring cubes and dividing by As "

* o~
(31) - S *

K[s(s+1)—1-\ﬂjs

This shows that p* will decrease linearly from 1 for As small and
positive, i.e., inward deflected poles, with the indicated .
If s is critical for a/h, i.e., (12) holds approximately then (31)
becomes, by (12)

* ~ (s,s,s) -~ NS X ~ _.v§
P —1=--—23_:—As = —-—ﬁ(s+%)As =z -?(s+%)v,

on using the analysis in [15, p. 306] for large s, where v is the

polaxr deflcction in radii, Or one can write (a/h)As = w , the polar

SRS

.
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deflection in Lhicknesses, to get Thompson's formula [13],

* 2.% 8 w
&~ s = [0 AT 1) e O S A
P 3 rsQ ) n o skl
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